Millisecond, Micron Precision Multi-Whisker Detector

نویسندگان

  • Stephen K. Grady
  • Thanh T. Hoang
  • Shree Hari Gautam
  • Woodrow L. Shew
چکیده

The neural mechanisms of somatosensory information processing in the rodent vibrissae system are a topic of intense debate and research. Certain hypotheses emphasize the importance of stick-slip whisker motion, high-frequency resonant vibrations, and/or the ability to decode complex textures. Other hypotheses focus on the importance of integrating information from multiple whiskers. Tests of the former require measurements of whisker motion that achieve high spatiotemporal accuracy without altering the mechanical properties of whiskers. Tests of the latter require the ability to monitor the motion of multiple whiskers simultaneously. Here we present a device that achieves both these requirements for two-dimensional whisker motion in the plane perpendicular to the whiskers. Moreover, the system we present is significantly less expensive (<$2.5 k) and simpler to build than alternative devices which achieve similar detection capabilities. Our system is based on two laser diodes and two linear cameras. It attains millisecond temporal precision and micron spatial resolution. We developed automated algorithms for processing the data collected by our device and benchmarked their performance against manual detection by human visual inspection. By this measure, our detection was successful with less than 10 µm deviation between the automated and manual detection, on average. Here, we demonstrate its utility in anesthetized rats by measuring the motion of multiple whiskers in response to an air puff.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Millisecond-Timescale Local Network Coding in the Rat Primary Somatosensory Cortex

Correlation among neocortical neurons is thought to play an indispensable role in mediating sensory processing of external stimuli. The role of temporal precision in this correlation has been hypothesized to enhance information flow along sensory pathways. Its role in mediating the integration of information at the output of these pathways, however, remains poorly understood. Here, we examined ...

متن کامل

Rapid changes in thalamic firing synchrony during repetitive whisker stimulation.

Thalamic firing synchrony is thought to ensure selective transmission of relevant sensory information to the recipient cortical neurons by rendering them more responsive to temporally correlated input spikes. However, direct evidence for a synchrony code in the thalamus is limited. Here, we directly measure thalamic firing synchrony and its stimulus-induced modulation over time, using simultane...

متن کامل

Efficient population coding of naturalistic whisker motion in the ventro-posterior medial thalamus based on precise spike timing

The rodent whisker-associated thalamic nucleus (VPM) contains a somatotopic map where whisker representation is divided into distinct neuronal sub-populations, called "barreloids". Each barreloid projects to its associated cortical barrel column and so forms a gateway for incoming sensory stimuli to the barrel cortex. We aimed to determine how the population of neurons within one barreloid enco...

متن کامل

Spatiotemporal Dynamics of Cortical Sensorimotor Integration in Behaving Mice

Tactile information is actively acquired and processed in the brain through concerted interactions between movement and sensation. Somatosensory input is often the result of self-generated movement during the active touch of objects, and conversely, sensory information is used to refine motor control. There must therefore be important interactions between sensory and motor pathways, which we ch...

متن کامل

Acousto-optic laser scanning for multi-site photo-stimulation of single neurons in vitro.

To study the complex synaptic interactions underpinning dendritic information processing in single neurons, experimenters require methods to mimic presynaptic neurotransmitter release at multiple sites with no physiological damage. We show that laser scanning systems built around large-aperture acousto-optic deflectors and high numerical aperture objective lenses provide the sub-millisecond, su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013